Page 88 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 88

Unit 4: Laguerre Polynomials




                                                                                                Notes
                                           1         2
                                        =    2 4x x
                                           2!
          Similarly,
                                           1          2   3
                                     x
                                  L 3 ( ) =  6 18x  9x   x
                                           3!
                                           1            2    3   4
                                     x
                                  L 4 ( ) =  24 96x  72x  16x   x  ,  etc .
                                           4!
          Self Assessment

          9.   Show that

                                              e x  d 2  2  x
                                          x
                                        L 2 ( )   2  x e
                                              2 dx
                         3
          10.  Show that  x  is given by
                                  x  3  6 L 0 ( ) 3 ( ) 3 ( ) L  3 ( )
                                              L
                                                    L
                                                       x
                                                            x
                                                x
                                          x
                                               1
                                                     2
          11.  From  Rodrigue s formula show that
                                           x
                                        dL 2 ( )  L  ( ) L  ( )
                                                       x
                                                  x
                                         dx      1    0
                                                                        x
          4.4 Orthogonality Property of Laguerre Polynomials  L        ( )
                                                                      n
          To prove
                                                0 if m n
                            x
                          e L n ( )L m ( )dx =                                     ...(i)
                               x
                                   x
                         0                  mn  1 if m n
          We have from the generating function of Laguerre polynomial, that
                                            1   tx  (1 t  )
                                  n
                                     x
                                 t L n ( ) =  e
                               n  0        1 t
                                            1   xs /(1 s )
                                 m
                                     x
          and                   s L m ( ) =   e
                             m  0          1 s
                                                              sx
                                                 1      tx  /(1 t )  (1 s )
                                            x
                          x n m
                                x
                        e t s L  ( ) L  ( ) = e       e
                                     x
                               n   m         (1 t )(1 s )                         ...(ii)
                     m , n  0
          Thus
              x
                                    m
             e L n ( )L m ( )dx = Coeff. of  s t  in the expansion of   e  x  1  e  tx  /(1 t )e  sx /(1 s  ) dx
                                      n
                      x
                 x
           0                                            0   (1 t )(1 s )
                                           LOVELY PROFESSIONAL UNIVERSITY                                   81
   83   84   85   86   87   88   89   90   91   92   93