Page 89 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 89

Differential and Integral Equation




                    Notes
                                                                          t  s
                                                             1         x  1
                                                      =              e    1 t  1 s  dx
                                                         (1 t )(1 s )  0

                                                                                         t  s
                                                             1           1           x  1  1 t  1 s
                                                      =                            e
                                                         (1 t )(1 s )  t     s
                                                                   1                           0
                                                                     (1 t ) (1 s )

                                                              1           (1 t )(1 s )
                                                      =                                    [ 1]
                                                          (1 t )(1 s ) (1 t )(1 s ) t (1 s ) s (1 t )

                                                          1         1           2    3     n
                                                                              st
                                                                                         st
                                                                                   st
                                                      =       (1 st )   1 st  ( )  ( )   ( )              ...(iii)
                                                         1 st
                                                      m
                                   In which coefficient of  s t n
                                                   is 0 if  m n                                           ...(iv)

                                   and             is 1 if  m  n
                                   Hence

                                                                    0 if m n
                                                    x
                                                   e L m ( ) ( )dx =
                                                         L
                                                            x
                                                        x
                                                          n
                                                 0                  1 if m n
                                   or
                                                    x
                                                            x
                                                        x
                                                   e L m ( ) ( )dx =  mn  (where  , , 1, 2, 3,  )          ...(v)
                                                         L
                                                                               n
                                                                             m
                                                          n
                                                 0
                                   Self Assessment
                                                   x
                                                      x
                                                          x
                                                        L
                                   12.  Whether   e L 2 ( ) ( )dx  is equal to
                                                         3
                                                0
                                       (a)  1                            (b)  5
                                       (c)   1                           (d)  0
                                   13.  Find out
                                                                         L  ( )
                                                                            x
                                                                       mn m
                                                                    m  0
                                   14.  Prove that

                                                                    x
                                                                  e L 1 ( ) ( )dx  0
                                                                         L
                                                                           x
                                                                       x
                                                                          2
                                                                 0


          82                                LOVELY PROFESSIONAL UNIVERSITY
   84   85   86   87   88   89   90   91   92   93   94