Page 138 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 138

Unit 11: Integration




                                                                                                Notes
                                     f    g
                                    E    E
          Since                       f  |f|


                                     f    |f|                                     … (1)
                                    E    E
                               Again – f   |f|

                                     f    |f|
                                   E     E

          or                       |f|    f                                       … (2)
                                   E     E
          From (1) and (2) we get

                                   |f|    f   |f|
                                   E     E    E


                                    f     |f|
                                   E     E

          Proof of 4: It follows from (3) and the fact that  1 mE .
                                                E

          Proof of 5:                f =  f
                                            A B
                                   A B
          Now                       A B  =   A  B  A B

          where A and B are disjoint measurable sets i.e.
                                 A   B =

                                     f =  f(  A  B  )  f  A B
                                   A B

                                       =  f     f    0           [ A  B =   and m ( ) = 0]
                                            A     B


                                       =  f   f
                                         A   B

          11.1.3 The Lebesgue Integral of a Non-negative Function

          Definition: If f is a non-negative measurable function defined on a measurable set E, we define


                                     f =  sup h ,
                                         h f
                                    E       E


                                           LOVELY PROFESSIONAL UNIVERSITY                                   131
   133   134   135   136   137   138   139   140   141   142   143