Page 135 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 135

Measure Theory and Functional Analysis




                    Notes
                                                               =  inf a                                 ( a > 0)
                                                                   f
                                                                    E

                                                               =  inf a
                                                                   f
                                                                     E

                                                               =  a inf
                                                                    f
                                                                     E

                                                               =  a f
                                                                   E
                                   Again if                   a < 0,

                                                             af   inf  a
                                                               =  a  af
                                                            E        E

                                                               =  sup a                                 ( a < 0)
                                                                   f
                                                                     E
                                                               =  sup a
                                                                   f
                                                                      E
                                                               =  a sup
                                                                     f
                                                                      E
                                                               =  a f
                                                                   E
                                   Therefore in each case

                                                             af =  a f                                     … (i)
                                                            E      E
                                   Now we prove that

                                                          (f g) =  f  g
                                                         E        E  E
                                   Let    and    be two simple functions such that    > f and      g, then    +    is a simple
                                       1      2                              1        2          1   2
                                   function and    +    f + g.
                                               1   2
                                   or                      f + g =    +
                                                                  1    2
                                                          (f g)   (      )
                                                                     1   2
                                                         E       E

                                   But                         =
                                                          1   2     1    2
                                                       E          E    E






          128                               LOVELY PROFESSIONAL UNIVERSITY
   130   131   132   133   134   135   136   137   138   139   140