Page 136 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 136

Unit 11: Integration




                                                                                                Notes
                                 (f g)
                                            1    2
                                E        E    E

          Since                 inf  1  =  f
                               f  1
                                  E      E
          and                  inf     =  g
                               g  2  2
                                  E      E

                                 (f g)    f   g                                   … (2)
                                E        E   E
          On the other hand if   and   are two simple functions such that   < f and     g. Then   +   is
                            1    2                             1       2         1  2
          simple function and
                                    +    f + g,
                                  1   2
          or                       f + g    +
                                         1   2

                                 (f g)    (  1  2 )
                                E        E


          But                  (     ) =
                                 1  2      1    2
                              E          E    E
                                 (f g)     1    2
                                E        E    E

          Since                 sup    =  f
                                     1
                                f  1
                                   E     E
          and                  sup   2  =  g
                                f  2
                                   E     E
                                 (f g)    f   g                                   … (3)
                                E        E   E
          From (2) and (3), we get

                                 (f g) =  f   g
                                E        E   E

                               (af  bg) =  af  bg
                              E          E    E

                                       =  a f  b g  from (i)
                                          E    E
          Proof of 2: Since f = g a.e.
                                   f – g = 0 a.e.




                                           LOVELY PROFESSIONAL UNIVERSITY                                   129
   131   132   133   134   135   136   137   138   139   140   141