Page 133 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 133

Measure Theory and Functional Analysis




                    Notes          Since we know that every step function is a simple function,
                                                       b             b
                                                   sup    (x) dx    sup  (x) dx
                                                         1
                                                    1  f           f
                                                       a             a
                                                      b             b
                                   and             inf    (x) dx    inf  (x) dx
                                                    1  f  1        f
                                                      a             a
                                   where   and   vary over all the simple functions defined on [a, b]. Thus from the above relation,
                                   we have

                                            b           b          b          b
                                          R f(x) dx sup   (x) dx inf  (x) dx R f(x) dx
                                                                  f
                                                      f
                                            a           a          a          a
                                              b          b
                                          sup   (x) dx inf  (x) dx
                                            f           f
                                              a          a
                                          b          b
                                           f(x) dx R f(x) dx
                                          a          a





                                     Note  The converse of this theorem is not true i.e.
                                     A Lebesgue integrable function may not be Riemann integrable
                                     e.g. Let f be a function defined on the interval [0, 1] as follows:

                                                                  1, if x is rational
                                                           f (x) =
                                                                  0, if x is irrational
                                   Let us consider a partition p of an interval [0, 1].

                                                                  N
                                                         U (p, f) =   M  x
                                                                      i  i
                                                                  i 1
                                                               = 1 x  + 1 x  + …… + 1 x  = 1 – 0
                                                                    1    2          n
                                                               = 1.

                                                          1
                                                           f dx = inf U (p, f) = 1 – 0 = 1.
                                                          0

                                                          1
                                                           f dx = sup L (p, f)
                                                          0
                                                               = sup {0 x  + 0 x + …… + 0 x }
                                                                        1    2          n
                                                               = 0




          126                               LOVELY PROFESSIONAL UNIVERSITY
   128   129   130   131   132   133   134   135   136   137   138