Page 162 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 162

Unit 12: General Convergence Theorems




                                                                                                Notes
                                            nx sinx
                                                     1
                                           1 (nx)
          If  (x) = 1,   x, then | fn (x) |     (x),   x.
          Hence by dominated convergence theorem, we get

                                1           1               1
                                  nx sinx        nx sinx
                            Lim         dx   Lim        dx   (0) dx  0
                             n   1 (nx)       n  1 (nx)
                                0           0               0
                           1
                             x sinx
                   Limn            dx  = 0
                    n       1 (nx)
                           0
                            1
                              x sinx
                                    dx = 0 (n ).
                                            –1
                             1 (nx)
                            0
                                           2 2
                                        2
                                      n xe  n x
                 Example: Show that  Lim      dx  = 0, if a > 0, but not for a = 0.
                                  n     1 x 2
                                     a
                        putting nx  u
          Solution: If a > 0,        , we get
                        and du  ndx
                               2
                              n xe  n 2 x 2  ue  u 2 du     ue  u 2
                                      dx                          du
                                               2
                                                              2
                                1 x  2     1 u /n 2   (na, )  1 u /n 2
                             a            na        o
                     2
                    u
                 u.e               2
          Also            (na, )  u.e  u  L [0, ]
                   2
                       2
               1 (u /n )
                       u.e  u 2
          and  Lim  (ne, )     0 as  ( , )  0 .
                          2
              n       1 u /n  2
          Hence by Lebesgue dominated convergence theorem, we obtain
                                         2 2                u 2
                                        n x
                                     2
                                    n xe                 u.e
                               Lim         dx Lim               du
                                                           2
                               n     1 x 2     n    (na, )  1 u /n  2
                                  a               a
                                                          u.e  u 2
                                                      =  Lim  (na, )  du  0 dx 0 .
                                                            2
                                                 n       1 u /n  2
                                                a                    o
          Now when a = 0,
                                                        2 2
                                           2 2
                                                    2
                                       2
                                      n xe  n x  1  n xe  n x
                                             dx           dx
                                       1 x 2        1 x 2
                                     o           0


                                           LOVELY PROFESSIONAL UNIVERSITY                                   155
   157   158   159   160   161   162   163   164   165   166   167