Page 160 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 160

Unit 12: General Convergence Theorems




                                                                                                Notes
                                         1
                                       =  (0) dx 0
                                         0

                               1          1
                            lim f (x) dx =   limf (x) dx
                            n   n          n  n
                               0          0
          This verifies the result of bounded convergence theorem.

                                                                              1
                 Example: Use Lebesgue dominated convergence theorem  to evaluate  lim f (x) dx   ,
                                                                           n    n
                                                                              0
          where

                                          n  3/2 x
                                   f (x) =      , n = 1, 2, 3, … 0   x   1.
                                   n         2  2
                                         1 n x
                                          n  3/2 x
          Solution:                f (x) =
                                   n         2  2
                                         1 n x
                                         1 n 3/2 x  2
                                       =
                                               2
                                         x 1 n x  2
                                         1
                                            g(x), (say)
                                         x
                                   f (x)  g (x)
                                   n
          and                      g (x)   L (0, 1],
          Hence by Lebesgue Dominated Convergence Theorem.

                               1         1
                            lim f (x) dx =  limf (x) dx
                            n   n         n   n
                               0         0
                                         1
                                               n  3/2 x
                                       =  lim        dx
                                                  2
                                          n   1 n x  2
                                         0
                                         1
                                               1     x
                                       =  lim             dx
                                          n    n   1    2
                                         0          2  x
                                                   n
                                         1
                                       =  0 dx  = 0.
                                         0


                 Example: If (f ) is a sequence of non-negative function s.t. f    f and f    f for each n, show
                           n                                  n       n
          that

                                             f  lim f n





                                           LOVELY PROFESSIONAL UNIVERSITY                                   153
   155   156   157   158   159   160   161   162   163   164   165