Page 165 - DECO401_MICROECONOMIC_THEORY_HINDI
P. 165
bdkbZ 7 % ek¡x fl¼kar esa uwru fodkl
7-2 js[kh; O;; flLVe (LES) (The Linear Expenditure System) uksV
izks- vkj LVksu us mi;ksfxrk iQyu ij vkèkkfjr js[kh; O;; iz.kkyh dk ekWMy izfrikfnr fd;k] ftlls ,d
ctV izfrca/ osQ vèkhu mi;ksfxrk iQyu dks vfèkdre djosQ ek¡x iQyuksa dks lkekU; rjhosQ ls O;qRiUu fd;k
tkrk gSA bl igyw ls] LES dh èkkj.kk mnklhurk oØ dh èkkj.kk osQ leku gSA fiQj Hkh] bu esa nks varj
gSaμ(1) mnklhurk oØ O;fDrxr oLrqvksa ls lacaèk j[krs gSa tc fd LES ^oLrqvksa osQ xzqiksa* ls lacafèkr gSA
(2) mnklhurk oØ iz.kkyh esa oLrqvksa dk LFkkukiUu fd;k tk ldrk gS] tcfd LES esa xzqiksa osQ chp
LFkkukiUu ugha fd;k tkrk gSA
bldh ekU;rk,¡ (Its Assumptions)
js[kh; O;; flLVe dk ,d ekWMy fuEu ekU;rkvksa ij vkèkkfjr gSμ
1- miHkksDrk oLrqvksa osQ ik¡p xzqi gSa] A, B, C, D vkSj EA
2- oLrqvksa osQ izR;sd xzqi esa lHkh LFkkukiUu vkSj iwjd 'kkfey gSaA
3- xzqiksa osQ chp oLrqvksa dh dksbZ LFkkukiUurk ugha gS] ijarq ,d xzqi esa LFkkukiUurk gks ldrh gSA
4- miHkksDrk dh vk; nh gqbZ vkSj fLFkj gSA
5- miHkksDrk oLrqvksa dh dherksas ij è;ku fn, fcuk] izR;sd xzqi esa ls oLrqvksa dh oqQN U;wure ek=kk
[kjhnrk gSA bUgsa thfodk ek=kk,¡ dgrs gSa ftUgsa miHkksDrk vius thou&fuokZg osQ fy, [kjhnrk gSA mu
ij O;; dh xbZ eqnzk fuokZg vk; dgykrh gSA 'ks"k vk;] ftls vfrfjDr vk; dgrs gSa] mls oLrqvksa
osQ fofHkUu xzqiksa osQ chp mudh dherksa osQ vkèkkj ij vkoafVr dj fn;k tkrk gSA
6- miHkksDrk foosdiw.kZrk ls dk;Z djrk gSA
7- mi;ksfxrk,¡ ;ksxkRed gSaA
LES dh ekWMy
;s ekU;rk,¡ nh gksus ij] izks- LVksu us y?kqx.kdksa (logarithms) esa oLrqvksa osQ xzqiksa dk ,d ;ksxkRed
mi;ksfxrk iQyu izfriknu fd;kA
n
U ∑ a i log (Q – Ci)
−
il i
vFkkZr~ U = U + U + U + U + U
A B C D E
a2
;k U = (Q – C ) a1 .(Q – C ) ... (Q – C ) an
1 1 2 2 n n
;k U =a log (Q – C ) = a log (Q – C ) + .... a log (Q – C )
1 1 1 2 2 2 n n n
[O < a < 1; > C; > 0; (Q – C ) > 0]
i
1
1
miHkksDrk vius ctV (vk;) izfrcaèk osQ vèkhu viuh oqQy mi;ksfxrk dks vfèkdre djrk gS ftlls mldk
mi;ksfxrk iQyu gSμ
Maximise U =a log (Q – C ) + ....... + a log (Q – C )
1 1 1 n n n
Subject to Y = ΣP Q
i i
izfrcafèkr mi;ksfxrk iQyu dk vfèkdredj.k fuEu ek¡x iQyu nsrk gSμ
a
Q =C + i (Y – ∑P C ) ...(1)
i i i i
P i
LOVELY PROFESSIONAL UNIVERSITY 159