Page 165 - DECO401_MICROECONOMIC_THEORY_HINDI
P. 165

bdkbZ 7 % ek¡x fl¼kar esa uwru fodkl





          7-2 js[kh; O;; flLVe (LES) (The Linear Expenditure System)                             uksV

          izks- vkj LVksu us mi;ksfxrk iQyu ij vkèkkfjr js[kh; O;; iz.kkyh dk ekWMy izfrikfnr fd;k] ftlls ,d
          ctV izfrca/ osQ vèkhu mi;ksfxrk iQyu dks vfèkdre djosQ ek¡x iQyuksa dks lkekU; rjhosQ ls O;qRiUu fd;k
          tkrk gSA bl igyw ls] LES dh èkkj.kk mnklhurk oØ dh èkkj.kk osQ leku gSA fiQj Hkh] bu esa nks varj
          gSaμ(1) mnklhurk oØ O;fDrxr oLrqvksa ls lacaèk j[krs gSa tc fd LES ^oLrqvksa osQ xzqiksa* ls lacafèkr gSA
          (2) mnklhurk oØ iz.kkyh esa oLrqvksa dk LFkkukiUu fd;k tk ldrk gS] tcfd LES esa xzqiksa osQ chp
          LFkkukiUu ugha fd;k tkrk gSA

          bldh ekU;rk,¡ (Its Assumptions)
          js[kh; O;; flLVe dk ,d ekWMy fuEu ekU;rkvksa ij vkèkkfjr gSμ

            1- miHkksDrk oLrqvksa osQ ik¡p xzqi gSa] A, B, C, D vkSj EA
            2- oLrqvksa osQ izR;sd xzqi esa lHkh LFkkukiUu vkSj iwjd 'kkfey gSaA
            3- xzqiksa osQ chp oLrqvksa dh dksbZ LFkkukiUurk ugha gS] ijarq ,d xzqi esa LFkkukiUurk gks ldrh gSA
            4- miHkksDrk dh vk; nh gqbZ vkSj fLFkj gSA
            5- miHkksDrk oLrqvksa dh dherksas ij è;ku fn, fcuk] izR;sd xzqi esa ls oLrqvksa dh oqQN U;wure ek=kk
               [kjhnrk gSA bUgsa thfodk ek=kk,¡ dgrs gSa ftUgsa miHkksDrk vius thou&fuokZg osQ fy, [kjhnrk gSA mu
               ij O;; dh xbZ eqnzk fuokZg vk; dgykrh gSA 'ks"k vk;] ftls vfrfjDr vk; dgrs gSa] mls oLrqvksa
               osQ fofHkUu xzqiksa osQ chp mudh dherksa osQ vkèkkj ij vkoafVr dj fn;k tkrk gSA
            6- miHkksDrk foosdiw.kZrk ls dk;Z djrk gSA
            7- mi;ksfxrk,¡ ;ksxkRed gSaA

          LES dh ekWMy

          ;s ekU;rk,¡ nh gksus ij] izks- LVksu us y?kqx.kdksa (logarithms) esa oLrqvksa osQ xzqiksa dk ,d ;ksxkRed
          mi;ksfxrk iQyu izfriknu fd;kA

                                           n
                                       U  ∑  a i  log (Q  – Ci)
                                           −
                                          il         i
          vFkkZr~                 U = U  + U  + U  + U  + U
                                         A    B    C    D    E
                                                          a2
          ;k                      U = (Q  – C ) a1  .(Q  – C )  ... (Q  – C ) an
                                         1    1     2    2       n   n
          ;k                      U =a  log (Q  – C ) = a log (Q  – C ) + .... a  log (Q  – C )
                                        1      1   1    2     2    2      n      n   n
                                                       [O < a  < 1; > C; > 0; (Q  – C ) > 0]
                                                             i
                                                                                 1
                                                                             1
          miHkksDrk vius ctV (vk;) izfrcaèk osQ vèkhu viuh oqQy mi;ksfxrk dks vfèkdre djrk gS ftlls mldk
          mi;ksfxrk iQyu gSμ
          Maximise                U =a  log (Q  – C ) + ....... + a  log (Q  – C )
                                        1      1   1           n      n   n
          Subject to              Y = ΣP Q
                                         i  i
          izfrcafèkr mi;ksfxrk iQyu dk vfèkdredj.k fuEu ek¡x iQyu nsrk gSμ
                                            a
                                 Q =C +      i   (Y – ∑P C )                       ...(1)
                                   i    i             i i
                                            P i



                                           LOVELY PROFESSIONAL UNIVERSITY                                   159
   160   161   162   163   164   165   166   167   168   169   170