Page 167 - DECO401_MICROECONOMIC_THEORY_HINDI
P. 167

bdkbZ 7 % ek¡x fl¼kar esa uwru fodkl





          tgk¡                  X  =i oLrqvksa dk miHkksx caMy                                   uksV

                                 i
                                U = miHkksx caMy ls izkIr gqbZ mi;ksfxrk
                                P  =i oLrqvksa dh dhersa
                                 i
                                Y = miHkksDrk dh oqQy vk;A

          eku yhft, fd vkSj λ = Pi/Y vkSj vc mi;ksfxrk vfèkdredj.k leL;k dks bl izdkj fy[kk tk ldrk
                          i
          gS]
          Max                       U (X)

          Subject to                   ∑ λ X   ≤  l                               ...(2)
                                          i   i
                                      i
          tgk¡] λ  lkekU;Ñr (Normalised) dhersaA
               i
          bl :Ik esa] mi;ksfxrk vfèkdredj.k leL;k osQ n pjksa osQ nks lSV gksrs gSaµ(i) X ewY;ksa osQ lkFk miHkksx
          ek=kk,¡] vkSj (ii) lkekU;Ñr dhersa λ = λ ,...., λ ewY;ksa osQ lkFkA
                                         i    n
          b"Vre ek¡x caMy ek¡x iQyu osQ flLVe }kjk bl izdkj fn;k tkrk gSA
                                 X = D  (λ) i = 1, ........ n                     ...(3)
                                   i
                                        i
          vfèkdre mi;ksfxrk Lrj lehdj.k (3) osQ b"Ve miHkksx caMy dks lehdj.k (1) osQ mi;ksfxrk iQyu esa
          LFkkukiUu djosQ izkIr fd;k tkrk gSA vkxs] ;g b"Vre miHkksx caMy vk; Lrj vkSj dherksa osQ lfn'k
          (Vector) ij fuHkZj djrk gS] tks lehdj.k (3) esa ek¡x iQyu osQ flLVe esa izfr¯cfcr gksrk gSA blls izkIr
          gksrk gS ijks{k mi;ksfxrk iQyu]
                               V (λ) = U (d), (λ), ......... d  (λ)               ...(4)
                                                       n
          V ijks{k mi;ksfxrk iQyu dgykrk gS] D;ksafd ;g ijks{k :i ls vk; Lrj vkSj dher lfn'k ;k lkekU;hÑr
          dherksa osQ ,d lSV λ ij fuHkZj djrh gSA

          ijks{k mi;kssfxrk iQyu dh fo'ks"krk,¡ (Properties of Indirect Utility Function)

          ijks{k mi;ksfxrk iQyu dh fuEu fo'ks"krk,¡ gSaµ
            1- ;fn U fujarj gS] rks V Hkh λ osQ lHkh èkukRed lSVksa ij fujarj gSaA
            2- U ugha c<+rk D;ksafd ;fn dher c<+kbZ tkrh gS ;k vk; de dh tkrh gS] rks ;g vfèkdre mi;ksfxrk
               dks ugha c<+k ldrh gSA ;g lgh gS ;|fi U miHkksx caMy ith esa c<+ jgh gksA
            3- U t:jru~ ?kVrh ugha gS tc ith lkekU;Ñr dher gks] ;|fi U miHkksx caMy ith esa c<+ jgh gksA
            4- ;fn ,d dks.kkRed gy (Corner solution) gks] vFkkZr~ X  = 0,  rks P dks c<+kus ls miHkksDrk dh
                                                          t
               mi;ksfxrk ij dksbZ izHkko ugha gksrkA mnkgj.kkFkZ] ;fn ek#fr tsu dh dher c<+k nh tkrh gS rks bldk
               vfèkdrj miHkksDrkvksa osQ mi;kssfxrk Lrjksa ij izHkko ugha iM+rk gSA

          xzkiQh; izLrqrhdj.k (Graphic Presentation)
          ijks{k mi;kssfxrk iQyu dks ijks{k mnklhurk oØksa }kjk fpf=kr fd;k tkrk gSA eku yhft, fd osQoy nks
          miHkksDrk oLrq,¡ 1 vkSj 2 gSa ftudh lkekU;Ñr dhersa λ vkSj λ gSa ftUgsa Øe'k% lekukarj vkSj vuqyac v{kksa
                                                        2
                                                  1
          ij fy;k x;k gS] tSlk fd fp=k 7-3 esa gSA ,d ijks{k mnklhurk oØ tSls IIC  lkekU;hÑr dherkas osQ la;ksxksa
                                                                 2
          dks λ n'kkZrk gS] tks vfèkdre mi;ksfxrk Lrj dks vifjofrZr NksM+ nsrs gSaA ;fn miHkksDrk IIC oØ ij nksuksa
              2                                                              2
          esa ls fdlh ,d oLrq ls larq"V ugha gS vkSj mQ¡ps oØ IIC ij pyk tkrk gS] rks nksuksa oLrqvksa dh lkekU;hÑr
                                                   3
          dhersa c<+rh gSa vkSj mi;ksfxrk ?kV tkrh gSA blosQ foijhr ;fn miHkksDrk uhps osQ oØ IIC ij pyk tkrk
                                                                            1
                                           LOVELY PROFESSIONAL UNIVERSITY                                   161
   162   163   164   165   166   167   168   169   170   171   172