Page 37 - DECO401_MICROECONOMIC_THEORY_HINDI
P. 37

bdkbZ 3 % miHkksDrk fl¼karμx.kukokpd mi;ksfxrk fo'ys"k.k





                                                                                                 uksV
                         rkfydk 1- oqQy mi;ksfxrk rFkk lhekar mi;ksfxrk esa lacaèk
            ek=kk (bdkbZ)    oqQy mi;ksfxrk    lhekar mi;ksfxrk           fooj.k

                 1                8               8 μ 0 = 8         èkukRed lhekar mi;ksfxrk
                 2               14              14 μ 8 = 6         oqQy mi;ksfxrk c<+ jgh gSA
                 3               18              18 μ 14 = 4
                 4               20              20 μ 18 = 2

                 5               20              20 μ 20 = 0        'kwU; lhekar mi;ksfxrk
                                                                    oqQy mi;ksfxrk vfèkdreA
                 6               18              18 μ 20 = μ2       lhekar mi;ksfxrk ½.kkRed
                                                                    oqQy mi;ksfxrk ?kV jgh gSA

          rkfydk 1 ls Kkr gksrk gS fd oqQy mi;ksfxrk dk vuqeku fdlh oLrq dh fofHkUu bdkb;ksa ls izkIr lhekar
          mi;ksfxrk osQ tksM+ ls yxk;k tkrk gSA
            (i)             TU = ∑ MU

          (;gk¡ TU = oqQy mi;ksfxrk_ ∑ = flxek ;g tksM+ dk fpÉ gS_ MU = lhekar mi;ksfxrk vFkkZr~ oqQy
          mi;ksfxrk = lhekar mi;ksfxrkvksa dk tksM+A)
                      TU   =MU        + MU     + MU     + MU     + MU      + MU
                         6       (1st)    (2nd)     (3rd)    (4th)     (5th)    (6th)
                           =      8     +   6    +   4    +   2    +   0     + (–2) = 18

          blosQ foijhr lhekar mi;ksfxrk dk vuqeku oqQy mi;ksfxrk esa gksus okys ifjorZu dks oLrq dh ek=kk esa gksus
          okys ifjorZu ls Hkkx nsdj yxk;k tkrk gSA

                                   ΔTU
           (ii)            MU =          ;k MU   = TU  – TU
                                   ΔQ         nth     n     n–1
          (;gk¡ MU    = nth bdkbZ dh lhekar mi;ksfxrk_ TU = lHkh n bdkb;ksa osQ miHkksx dh oqQy mi;ksfxrk]
                  nth                             n
          TU     = n – 1 bdkb;ksa dh oqQy mi;ksfxrkA)
             n–1
          MU = lhekar mi;ksfxrk_ ΔTU = oqQy mi;ksfxrk esa ifjorZu_ ΔQ = oLrq osQ mi;ksx esa ifjorZu_
          Δ = ifjorZu dk fpÉ gSA
          mnkgj.k osQ fy,
                MU of 4th Unit = TU of 4th unit —TU of 3rd unit = 20 – 18 = 2
                          ΔTU      TUof 4thunit – TU of  3rdunit  20 – 18  2
               ;k               =                               =        =   = 2
                          ΔQ                   4–3                  1     1
          (iii) fdlh oLrq dh vfrfjDr bdkb;ksa dk tSls&tSls vfèkd miHkksx fd;k tkrk gS] muls feyus okyh
          lhekar mi;ksfxrk ?kVrh tkrh gSA ijarq oqQy mi;ksfxrk oLrq dh izR;sd vfrfjDr bdkbZ osQ miHkksx djus ls
          rc rd c<+rh jgrh gS tc rd og fcanq ugha vk tkrk fd ftl ij lhekar mi;ksfxrk 'kwU; gks tkrh gSA
           (iv) oqQy mi;ksfxrk lkekU;r% èkukRed jgrh gS tcfd lhekar mi;ksfxrk èkukRed] 'kwU; ;k ½.kkRed
          Hkh gks ldrh gSA
           (v) tc lhekar mi;ksfxrk 'kwU; gksrh gS rc oqQy mi;ksfxrk vfèkdre gksrh gSA
           (vi) lhekar mi;ksfxrk gh oqQy mi;ksfxrk esa ifjorZu dh nj dks fuèkkZfjr djrh gSA


                                           LOVELY PROFESSIONAL UNIVERSITY                                    31
   32   33   34   35   36   37   38   39   40   41   42