Page 235 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 235

VED1
          E\L-LOVELY-H\math13-1 IInd 21-10-11  IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12


                                                                                     bdkbZ     lekdyu dh fof/;k¡




          13-7 lkjka'k                                                                             uksV

              • fdlh iQyu dk lekdyu Kkr djus dh fuEufyf[kr nks eq[; fof/;k¡ gSaµ
                  izfrLFkkiu }kjk lekdyu   
  ,     
  # "

                   [k.M'k% lekdyu   
  ,     
  #

              • bl lafØ;k esa fn;s gq, lekdY;   
  ,  
   dks ekud lw=kksa  "  
          @    esa ifjofrZr
                djosQ lekdy fd;k tkrk gSA
              • ;fn lekdY;   
  ,  
   φ 0    1   ′     osQ :i dk gks vFkkZr~ ;g fdlh jkf'k      osQ iQyu rFkk
                blh jkf'k      osQ vody xq.kkad   ′     dk xq.kuiQy gks ;k bl :i esa fy[kk tk ldrk gks rks ge
                bl jkf'k      dks # osQ cjkcj ekudj lekdyu djrs gSaA

          13-8 'kCndks'k     !


            1- izfrLFkkiu  "  
       
 % foLFkkiuA
            2-  fof/     +  
 % rjhdkA


          13-9 vH;kl&iz'u  " 	  ! #

                                                                               tan 3x
                    2
            1-  ∫  sec 3x dx dk eku fudkysaA                            (mÙkj%   3   +  c )

                ∫   3  d                                    (mÙkj%  −  3  cosθ  +  1  cos 3 +  θ
            2-    sin θθ  dk eku ifjdfyr dhft,A                     4       12         c )
                                                                                  3
                                                                               cos x
                                                                       (mÙkj%  −     +
            3-  iQyu   
    
 
   dk   osQ lkis{k lekdy Kkr djsaA                      c )
                                                                                 3
                          π                                                  sin 2x
                      ∫
            4-    sin 2x +    dx  dk eku Kkr djsa                      (mÙkj%       +  c )
                          2                                                    2


            5-  ∫  4sin − x 1 2 ) x  !  dk eku fudysa                (mÙkj%    
 
      / %)
                  (1 −

          mÙkj % Lo&ewY;kadu

                lekdy                  &  / '        !    
 &         $
             '   &                  *   '            7   %            8   &
   230   231   232   233   234   235   236   237   238   239   240