Page 235 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 235
VED1
E\L-LOVELY-H\math13-1 IInd 21-10-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12
bdkbZ lekdyu dh fof/;k¡
13-7 lkjka'k uksV
• fdlh iQyu dk lekdyu Kkr djus dh fuEufyf[kr nks eq[; fof/;k¡ gSaµ
izfrLFkkiu }kjk lekdyu
,
# "
[k.M'k% lekdyu
,
#
• bl lafØ;k esa fn;s gq, lekdY;
,
dks ekud lw=kksa "
@ esa ifjofrZr
djosQ lekdy fd;k tkrk gSA
• ;fn lekdY;
,
φ 0 1 ′ osQ :i dk gks vFkkZr~ ;g fdlh jkf'k osQ iQyu rFkk
blh jkf'k osQ vody xq.kkad ′ dk xq.kuiQy gks ;k bl :i esa fy[kk tk ldrk gks rks ge
bl jkf'k dks # osQ cjkcj ekudj lekdyu djrs gSaA
13-8 'kCndks'k !
1- izfrLFkkiu "
% foLFkkiuA
2- fof/ +
% rjhdkA
13-9 vH;kl&iz'u " ! #
tan 3x
2
1- ∫ sec 3x dx dk eku fudkysaA (mÙkj% 3 + c )
∫ 3 d (mÙkj% − 3 cosθ + 1 cos 3 + θ
2- sin θθ dk eku ifjdfyr dhft,A 4 12 c )
3
cos x
(mÙkj% − +
3- iQyu
dk osQ lkis{k lekdy Kkr djsaA c )
3
π sin 2x
∫
4- sin 2x + dx dk eku Kkr djsa (mÙkj% + c )
2 2
5- ∫ 4sin − x 1 2 ) x ! dk eku fudysa (mÙkj%
/ %)
(1 −
mÙkj % Lo&ewY;kadu
lekdy & / ' !
& $
' & * ' 7 % 8 &