Page 234 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 234

VED1
          E\L-LOVELY-H\math13-1 IInd 6-8-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV
                                                                 iz'ukoyh

                                y?kq mÙkjh; iz'u

                                fuEufyf[kr dk eku Kkr dhft,µ
                                                                                  3x
                                       &   ∫ ax n − 1 b  !                  '   ∫ (x + 2 4) 5   !
                                                                                 3
                                            n
                                          x +
                                       %  ∫  x 2  3 !                       !   ∫  e  x   !
                                          1 −  2x                                x


                                                                     mÙkj
                                         a                                      1
                                                      +
                                       &    log|x +  n  b | c               '  −  (x +  3  4) − 4  +  c
                                         n                                      4
                                          1
                                       %   −  log |1 −  2x 3 | c+           !  2e  x  +  c
                                          6    e

                                Lo&ewY;kadu

                                cgqfodYih; iz'u    @   @   +     )  
   
 µ
                                      ∫ sin x
                                  5-        cos xdx dk eku gSµ
                                           1                                   1
                                                                                    2
                                                2
                                        &    sin x + c                      '    cos x + c
                                           2                                   2
                                           1
                                                  2
                                        %    cosec x +  c                   !  buesa ls dksbZ ughaA
                                           2
                                          3
                                                  2
                                      ∫ cot θ. cosec θ
                                  6-                 dθ  dk eku gksxkµ
                                              4
                                                                                   4
                                           cot θ                                cot θ
                                        &        +  c                       '  −      +  c
                                             4                                    4
                                             4
                                         cosec θ
                                       %         + c                        !  dksbZ ughaA
                                            4
                                               )
                                                  c
                                  7-  sin (log x +  fdldk gy gks ldrk gS\
                                             e
                                                                                           2
                                                                                   2
                                                     2
                                               2
                                        &   ∫ sin x  cos xdx                '   ∫ cot x  cosec xdx
                                       %   ∫  cos (log x )  dx              !  buesa ls dksbZ ughaA
                                                 e
                                               x
                                                 +
                                  8-  log|1 +  e x | c  fdldk gy gS\
                                        &  ∫  e x  dx                       '  ∫ 1 +  e x  dx
                                            1 +  e x                              e x
                                                                                 −
                                             x
                                        %   ∫ e dx                          !  ∫ 1 + e e x x  dx
   229   230   231   232   233   234   235   236   237   238   239