Page 239 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 239

VED1
          E\L-LOVELY-H\math14-1 IInd 21-10-11  IIIrd 24-1-12 IVth 21-4-12 VIth 10-9-12


                                                                            bdkbZ     ;ksx (tksM+) osQ :i esa lekdyu




                        ∫
               ∫
          (3)  log x dx , tan − 1  x dx  bR;kfn dk lekdy Kkr djus osQ fy, < = dks lnk nwljk iQyu ekudj  uksV
          lekdyu djrs gSaA
              ∫
          tSls  log x dx = ∫ (log ).1 dx  bR;kfnA
                              x
          (4) vko';drkuqlkj [k.M'k% lekdyu osQ lw=k dk iz;ksx ,d ls vf/d ckj djuk pkfg,A
          (5) ;fn nkfgus i{k esa lekdy ½.k fpÉ osQ lkFk vius iwoZor~ :i esa vk tkrk gS rks lehdj.k gy djus
          osQ fu;eksa dk iz;ksx dj iz'u gy djus pkfg,A






              uksV~l  ge] 'kCn < IJAK= esa] igys vkus okys iQyu dks izFke iQyu o ckn esa vkus okys iQyu
                     dks f}rh; iQyu pqudj [k.M'k% lekdyu dj ldrs gSaA

          tgk¡   L  
	  
     , 
        @   
    
  izfrykse f=kdks.kferh; iQyuksa   
 
      .

            
    bR;kfn  osQ fy, gSA

          IL I ,    +      
    
  y?kqx.kdh; iQyuksa  @ ,  . @ ,     ± &   bR;kfn  osQ fy, gSA
                                                      x
          JL J@,         
    
  chth; iQyuksa (,xx + 1, 2 , x       ) osQ fy, gSA



          AL A  , 
        @   
    
  f=kdks.kferh; iQyuksa  
 
  .   
      
   bR;kfn  osQ fy, gSA

          KL K   
 
   @   
    
  pj?kkrkadh; iQyuksa  &            3 . !  bR;kfn  osQ fy, gSA
          oSls rks [k.M'k% lekdyu djus osQ nkSjku iQyuksa osQ pquko dh dksbZ izekf.kr fof/ ugha gS] fiQj Hkh fo|kFkhZ
          mijksDr fVIi.kh esa of.kZr < IJAK= }kjk iQyuksa dk pquko dj [k.M'k% lekdyu dj ldrs gSaA



                                         gy lfgr mnkgj.k

                    ∫
          mnkgj.k 1-  log x dx  dk eku Kkr dhft,A
                         e
          gy % eku yks ;gk¡ bdkbZ f}rh; iQyu gS D;ksafd ;fn @ ,    dks nwljk iQyu fy;k tk, rks bldk lekdy

          ugha Kkr gks ldrkA
                           ∫  log x dx  -  ∫ log x .dx
                                               1
                               e
                                           e
                                     -  log x  . 1 dx − ∫     ∫  1  1 dx    ∫   ([k.M'k% lekdyu djus ij)
                                          e
                                                          x   

                                     - log x x −  e  ∫ 1  x dx =  x  log x −  e  ∫ 1 dx
                                                  x
                                     -   @ ,    2   / %                               mÙkj

                                       x
          pkgsa rks ge   @ ,    2   dks  x  log   Hkh fy[k ldrs gSa] D;ksafd @ ,   -
                                       e
   234   235   236   237   238   239   240   241   242   243   244