Page 242 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 242
VED1
E\L-LOVELY-H\math14-1 IInd 6-8-11 IIIrd 24-1-12 IVth 21-4-12 VIth 10-9-12
vFkZ'kkfL=k;ksa dk xf.kr
uksV a x 1
x
- x − ∫ adx
log a log a
a x a x
∴ - - x . − + . c mÙkj
log a (log ) 2
a
∫
mnkgj.k 9- log {x x 2 a 2 } dx dk eku Kkr dhft,A
∫
gy % log {x + x + 2 a 2 } dx
∫
- log {x + x + 2 a 2 }.1 dx
1 1(2 )
x
- log {x + x + 2 a 2 } x − . 1 + ∫ x dx
(x + x + 2 a 2 ) 2 x + 2 a 2
1 x + 2 a + 2 x
- log {x + x + 2 a 2 } x − ∫ x dx
(x + x + 2 a 2 ) x + 2 a 2
- log {x + x + 2 a 2 } x − ∫ x dx
2
x + a 2
1 2x dx
- log {x + x + 2 a 2 } x − ∫
2 x + a 2
2
1
- log {x + x + 2 a 2 } x − {2 x + 2 a 2 } + c
2
- log {x + x + 2 a 2 } x − x + 2 a + 2 c
- x log {x + x + 2 a 2 } − x + 2 a + 2 . c mÙkj
∫
-1
mnkgj.k 10- tan x dx dk eku fudkfy,A
∫
∫
gy % tan − 1 x dx - (tan − 1 x). 1 dx
−
1
)
- (tan x x − ∫ 1 + 1 x 2 . x dx
1 2x
−
- x tan x − ∫ dx
1
21 + x 2
1 dt
1
- x tan x − ∫ ,
−
2 t
/ - # rFkk ! - !# j[kus ij