Page 229 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 229

VED1
          E\L-LOVELY-H\math13-1 IInd 21-10-11  IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12


                                                                                     bdkbZ     lekdyu dh fof/;k¡




          Lo&ewY;kadu             	 
                                                              uksV

          fjDr LFkkuksa dh iwfrZ djsa    @@  
  +   @ 
E
 µ

            1- izfrLFkkiu lafØ;k esa fn, x, lekdY; dks ekud lw=kksa esa ifjofrZr djosQ --------- fd;k tkrk gSA
            2- ∫  sin (ax +  ) b dx =  −  1  cos (.........) +  c
                                   a


            3- ∫  sec ax +  dx =  .........  +  c
                    2
                                 a

            4-  ;fn    osQ iQyu esa --------- dk xq.kuiQy fn;k jgrk gS rks ml iQyu dk lekdyu    - # ekudj
                fd;k tk ldrk gSA

          13-4 lekdY;  
   %


          ;fn lekdY;   
  ,  
   φ 0    1   ′     osQ :i dk gks vFkkZr~ ;g fdlh jkf'k      osQ iQyu rFkk blh
          jkf'k      osQ vody xq.kkad   ′     dk xq.kuiQy gks ;k bl :i esa fy[kk tk ldrk gks rks ge bl jkf'k

          dks # osQ cjkcj ekudj lekdyu djrs gSaA





              uksV~l  ;fn      - # rks   ′     !  - !#

                                                  t
                                x
             ∴       ∫ φ  [( )] f′  f  x  ( ) dx  -  ∫ φ  ()tdt =  ψ  ( )  (eku yks)
                                      - ψ 0φ   1. 0# dk eku j[kus ij1



                                         gy lfgr mnkgj.k

                    ∫
                         4
          mnkgj.k 1-  sin x  cos xdx  dk eku Kkr dhft,A
          gy % eku yks 
 
   - # ⇒   
   !  - !#
                                         4
                      ∫ sin x .cosxdx  -  ∫ tdt
                          4
          vr%
                                       t 5     1
                                     -    / % -   
 
    / %                          mÙkj

                                        5      5
                    ∫
                                      θ
          mnkgj.k 2-  cot 3  . θ  2  θ cosec  d  dk eku Kkr dhft,A
          gy % eku yks  cot θ  ∫  3  . cosec θ  2  d θ  eku yks     θ -   rks 2   
    θ !θ - !


          ⇒                 
    θ !θ - 2 !
                                           3
                                         ∫
                                   θ
          ∴        ∫ cot θ  3  cosec θ  2  d  - 2  x dx  - 2   x 4 4   / %
                                            4
                                         cot θ
                                     -2         / %                                   mÙkj
                                           4
   224   225   226   227   228   229   230   231   232   233   234