Page 274 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 274
VED1
E\L-LOVELY-H\math15-1 IInd 6-8-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
vFkZ'kkfL=k;ksa dk xf.kr
uksV π 1
0 ∫ x sin xdx dk eku ifjdfyr dhft,A π )
2
2
3- (mÙkj% 4
0 ∫ a f ()xdx = 0 ∫ a ( f a − ) x dx
4- fl¼ dhft, fd
0 ∫ π/ 2 sin 2 log tan x dx = 0
x
5- fl¼ dhft, fd
mÙkj % Lo&ewY;kadu
fuf'pr lekdyu vf}rh; ! vko';d $ vpj
' fuEu lhek * & 7 ' 8 %
15-9 lanHkZ iqLrosaQ $ " %
iqLrdsa 1- eSFksesfVDl iQkWj bdksukWfeLV µ ;kekus µ izSfUVl gkWy bfUM;kA
2- eSFksesfVDl iQkWj bdksukWfeDl µ ekydkWe] fudksyl] ;w-lh- yUnuA
3- eSFksesfVDl iQkWj bdksukWfeLV µ fleksu vkSj Cywe µ ohok ifCyosQ'kuA
4- eSFksesfVDl iQkWj bdksukWfeLV µ esgrk vkSj enukuh µ lqYrku pUn ,.M lUlA
5- xf.krh; vFkZ'kkL=k µ ekbdy gSjhlu] iSfVªd okYMjuA
6- eSFksesfVDl iQkWj bdksukWfeDl µ dkyZ ih- fleksu] ykWjsUl CyweA
7- eSFksesfVDl iQkWj bdksukWfeDl ,.M iQkbukUl µ ekfVZu ukeZuA
8- eSFksesfVDl iQkWj bdksukWfeDl µ dkmQfUly iQkWj bdksukWfed ,tqosQ'kuA
9- ,lsfU'k;y eSFksesfVDl iQkWj bdksukWfeDl µ uWV lsMsLVj] ihVj gkeUM] izSfUVl gkWy ifCy-