Page 272 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 272
VED1
E\L-LOVELY-H\math15-1 IInd 6-8-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
vFkZ'kkfL=k;ksa dk xf.kr
uksV ∞ dx
∫
mnkgj.k 3% 0 (1 + x 22 dk eku Kkr dhft,A
)
b
gy % igys ge - - ∫ 0 (1 + dx 22 dk eku Kkr djsaxsA
x
)
ekuyks -
θ ∴ ! -
θ !θ
vc θ dh lhek,¡ 3.
' gSaA
2
d
- - ∫ 0 tan − 1 b sec θθ = ∫ 0 tan − 1 b cos θ 2 d = θ ∫ 0 tan − 1 b 1 + cos 2θ !θ
4
2
sec θ
θ sin 2 θ tan − 1 b tan − 1 b 2b
- 2 + 4 0 = 2 + 4(1 + b 2 )
1
tan − 1 b π π
∴ vHkh"V lekdy - lim + 2b = + 0 = mÙkj
b →∞ 2 1 + 1 4 4
b 2
iz'ukoyh (521
y?kq mÙkjh; iz'u
fuEu lekdyksa dk eku Kkr dhft,µ
dx
∞
dx
∫ 0 a + x 2 ∫ 0 ∞ x 2 a + x 2 ∫ 0 ∞ e − x / 2 !
2
2
x
3) dx
(x +
e dx
∞
∞
∫ 0 ∞ xe − x ! ∫ 0 1 + e 2x ∫ 1 x 6 2 (x + 1)
2
mÙkj
π 2 − 1
2
2a a
π 1
π
(58 − 15 )
4 30
Lo&ewY;kadu
2- cgqfodYih; iz'u @ @ + )
µ
a ∫ ∞ f ()xdx dk vFkZ gSµ
6-
& lim a ∫ b f ( )xdx ' lim b ∫ a f ( )xdx
b →∞ b →∞