Page 159 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_ENGLISH
P. 159

Unit 10: Correlation: Scatter Diagram Method, Karl Pearson's Coefficient of Correlation


                                                                                                     Notes
                                                    1
                                     log r = log 2704 –   [log 5398 + log 2224]
                                                    2
                                                  1
                                          = 3.4320 –   [3.7322 + 3.3472]
                                                  2

                                          = 3.4320 – 3.5397 = 1.8923  = 0.78
                        Thus the answer is the same.
            Example 4:  Making use of the data summarised below, calculate the coefficient of correlation, r :
                                                                                         12
                 Case           X           X           Case          X             X
                                 1            2                        1             2
                  A             10           9            E           12           11
                   B            6            4            F           13           13
                   C            9            6            G           11            8
                  D             10           9            H           9             4

            Solution:             Calculation of Coefficient of Correlation

               Case     X     ( X– X  ) x   2        X     (       x      2
                                                                                    12
                         1      1   1  1   x 1        2      2   2 ) X– X  2  x 2  xx
                A       10         0        0         9       +  1       1          0
                B        6        – 4      16         4       – 4       16         16
                C        9        –  1      1         6       +  2       1          2
                D       10         0        0         9       +  1       1          0
                E       12       +  2       4        11       +  3      +  3        6
                F       13       +  3       9        13       +  5      25         15
                G       11       +  1       1         8        0         0          0
                H        9        – 1       1         4       – 4       16          4

              N = 8  ∑X  = 80  ∑x  = 0  ∑x 1 2   = 32  ∑X  = 64 ∑x  = 0  ∑x 2 2   = 72  ∑xx  = 43
                                                                                  12
                                  1
                        1
                                                     2
                                                              2
                                           ∑X     80               ∑X    64
                                       X 1  =  N 1   =  8   = 10;  X  =  N 2   =  8   = 8.
                                                                2
                                               ∑xx
                                       r 12 =    12
                                             ∑  1 2  ×x  ∑  x 2 2
                                    ∑xx = 43, ∑x 1 2   = 32, ∑x 2 2   =  72.
                                      12
                        Substituting the values
                                              43      43    43
                                       r 12 =  32 ×72   =  2304   =  48   = 0.896.

                        Note: It should be noted that the above formula is the same as given earlier, i.e.,

                                               ∑xy
                                        r =
                                             ∑  2  ×x  ∑  y 2




                                             LOVELY PROFESSIONAL UNIVERSITY                                      153
   154   155   156   157   158   159   160   161   162   163   164