Page 269 - DECO401_MICROECONOMIC_THEORY_HINDI
P. 269

bdkbZ 11 % vk; ;k vkxe dh /kj.kk,¡





          8 #i, izkIr gksxhA blls izdV gksrk gS fd nwljh bdkbZ dh lhekar vk; 'kwU; (Zero) gksxhA fp=k esa OX-  uksV
          v{k dks gh MR oØ ekuk x;k gSA

                                             fp=k 11-3

                                         Y

                                       6
                                      Revenue  4  P



                                                    N
                                       2
                                                            AR
                                       0                      MR  X
                                              2     4     6
                                                  Output


          11-6    oqQy vkSlr rFkk lhekar vkxe esa T;kferh; ;k xzkfiQd laca/
                  (Graphical or Geometrical Relation between Total, Average
                  and Marginal Revenues)

          ,d iQeZ osQ oqQy] vkSlr rFkk lhekar vkxeksa esa fuEufyf[kr eq[; lacaèk gSaμ

            1- tc vkSlr vkxe oØ rFkk lhekar vkxe oØ ,d leku gksrh gS rFkk OX-v{k osQ lekukarj
               iM+h js[kk gksA (When Average Revenue and Marginal Revenue Curves Coincide
               and are represented by a Horizontal Straight Line Parallel to OX-axis) vkSlr
               vkxe oØ rFkk lhekar oØ osQ ,d leku gksus dh n'kk esa vkSlr vkxe rFkk lhekar cjkcj
               (AR = MR) gksrs gSaA bldk dkj.k ;g gS fd iQeZ nh gqbZ dher ij oLrq dh fdruh Hkh ek=kk dks
               csp ldrh gSA pw¡fd vkSlr vkxe ;k dher fLFkj gS blfy, lhekar vkxe Hkh fLFkj gksxk rFkk oqQy
               vkxe fLFkj nj ls c<+sxkA

                                             fp=k 11-4

                        Y                            Y

                      25                           25
                                           TR
                      20                           20
                     Revenue  15                  Revenue  15


                      10                           10
                                                      P     AR = MR
                       5                            5                       P
                       0                         X  0                         X
                          1   2   3   4   5            1   2   3   4   5
                                  Output                       Output
                                    (A)                          (B)




                                           LOVELY PROFESSIONAL UNIVERSITY                                   263
   264   265   266   267   268   269   270   271   272   273   274