Page 270 - DECO401_MICROECONOMIC_THEORY_HINDI
P. 270

O;f"V vFkZ'kkL=k osQ fl¼kar




                    uksV          fp=k 11-4 (A) esa iQeZ dh oqQy vkxe rFkk 11-4 (B) esa vkSlr vkSj lhekar vkxe oØ fn[kk, x, gSaA fp=k
                                  11-4 (A) ls Kkr gksrk gS fd oqQy vkxe oØ (TR) mQij mBrh gqbZ ,d ljy js[kk gSA mRiknu dh izR;sd
                                  bdkbZ dh fcØh ls oqQy vkxe esa leku o`f¼ gks jgh gSA fp=k 11-4 (B) ls Kkr gksrk gS fd PP js[kk vkSlr
                                  vkxe rFkk lhekar vkxe dks izdV dj jgh gSA ;g js[kk OX osQ lekukarj gSA blls izdV gksrk gS fd vkSlr
                                  vkxe rFkk lhekar vkxe (AR = MR) cjkcj gSaA
                                    2- ;fn vkSlr vkxe oØ rFkk lhekar vkxe oØ nksuksa gh uhps dh vksj >qdh lhèkh js[kk,¡ gksa
                                       (When  Average Revenue and Marginal Revenue Curves  are Straight Line
                                       Sloping Downwards)μfp=k 11-5 easa izdV dh xbZ vkSlr vkxe oØ (AR) rFkk lhekar vkxe
                                       oØ (MR) uhps dh vksj >qdh gqbZ lhèkh js[kk,¡ gSaA bl voLFkk esa lhekar vkxe oØ (MR) vkSlr
                                       vkxe oØ (AR) rFkk OY js[kk osQ eè; ls fLFkr gksxhA bldk vFkZ ;g gqvk fd

                                                                    AB = BC


                                                   fp=k 11-5                              fp=k 11-6



                                        Y                                          Y
                                                  B is located at  ½ (AC), implying
                                       P                                         C
                                                  that slope of MR is twice the
                                                  slope of AR.
                                            B
                                      Revenue  A  C                             Revenue  A  B  P



                                                                                            N
                                                           AR                                       AR
                                                   MR
                                       O                          X              O          MR              X
                                                   Output                                  Q
                                                                                             Output


                                  ;g fLFkfr ,dkfèkdkj rFkk ,dkfèkdkjh izfr;ksfxrk dh voLFkk esa gksrh gSA bl izdkj dh fLFkfr esa oqQy vkxe
                                  (TR)] vkSlr vkxe (AR) rFkk lhekar vkxe (MR) dk lacaèk fp=k 11-6 ls Li"V fd;k tk ldrk gSA
                                  fp=k 11-6 ls Kkr gksrk gS fd
                                                         TR = AR × Q = OA × OQ (= AP) = OAPQ
                                  or                     TR = ΣMR = OCNQ
                                  blfy,                ΣMR = AR × Q                     ;fn AB = BP (fp=k 10-6) rks
                                  or                 OCNQ = OAPQ                        ;g fu"d"kZ vklkuh ls fudkyk
                                                                                        tk ldrk gS fd MR oØ dk
                                  or                     TR = AR × Q = ΣMR
                                                                                        <yku ls nqxuk gksrk gSA
                                  (;gk¡] TR = oqQy vkxe_ AR = vkSlr vkxe_ Q = oLrq dh ek=kk_
                                  MR = lhekar vkxe_ Σ = (Summation) tksM+ dk fpÉ gSA)
                                  ΔACB rFkk ΔBPN dk {ks=k cjkcj gSa D;ksafd nksuksa dks oqQy vkxe esa ls OA BNQ dks ?kVk dj Kkr fd;k
                                  x;k gSA vU; 'kCnksa esa
                                                      ΔACB = ΔBPN
                                  (;s nksuksa f=kHkqt le:i gSa D;ksafd ΔACB dk {ks=kiQy = ΔBPN dk {ks=kiQy gS)



          264                              LOVELY PROFESSIONAL UNIVERSITY
   265   266   267   268   269   270   271   272   273   274   275