Page 215 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 215
VED1
E\L-LOVELY-H\math12-1 IInd 21-10-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
bdkbZ lekdyu % lekdyu osQ vk/kjHkwr fu;e
uksV
iz'ukoyh 12-2
fuEufyf[kr dk eku Kkr dhft,µ
∫ (e + x 2 sin x − 3cos ) dx ∫ (x − 2 cos x + x x
x
1- 2- sec tan ) dx -
∫ (7x − 6 8x + 3 ∫ (x + 2) (2x +
3- 5) dx - 4- 6) dx -
∫ ax + 3 bx + c (1 + ) x 3
5- x 2 dx - 6- ∫ x dx -
7- ∫ 1 x − x dx - 8- 3x + 2 4x + x 5 ∫ dx -
∫
∫ x 1 + x + x 2 + x 3 + ... dx -
9- a + x dx - 10- 2! 3!
∫ (1 − x 2 ∫ e log x
11- ) xdx - 12- x dx -
4
5 x 14- ∫ x + 1 dx
13- cosx − + e ∫ dx - 2 -
x x + 1
mÙkj
x 3
2
2 !
/ % − sin x + sec x + c
3
2
! 2 /' / % $ x + 3 5x + 2 12x + c
3
a 2 − c 2 6x 3/ 2
x
' x + b log | | + c 1 * x 7/ 2 + + 2x 3/2 / 2 x / %
e
2 x 7 5
3 4
7 2x 1/2 − 2/3 x 3 /2 + c 8 2 x x + 5 x + 5 + c
5 3
x 2 x 3
9 & @ , H & / H / % 3 x + + + ....
∠2 ∠3
2 2
x 3/ 2 − x 7 / 2 + c / %
3 7
2
!
2 ' @ , H H ) / % $ − cosec x + sec x + c
3