Page 293 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 293

VED1
          E\L-LOVELY-H\math17-1 IInd 21-10-11  IInd 21-10-11 IVth 21-4-12 Vth 20-8-12


                       bdkbZ      vodyu lehdj.kksa dk ifjp; vkSj gy % pyjkf'k;ksa dh i`FkDdj.kh; n'kk ,oa le:i lehdj.k




                                           1 dy                                                    uksV
                                      , .k       - tgk¡ % ,d fLFkjkad gSA
                                          f () ydx

          vr% lehdj.k (2) dks vc ge fuEufyf[kr :i esa fy[k ldrs gSaµ
                           1 dv  +  Pv  ,
                            kdx

                                  dv
                ;k                    , %  " , %  tks fd ,d js[kh; lehdj.k gSA
                                  dx
                      dy  1      2  6
          mnkgj.k 5 %    +  y =  xy  dk gy fudkfy,A
                      dx   x

          fn;s gq, lehdj.k dks    ls Hkkx nsus ij
                         1 dy  +  1 1
                                 .
                         y 6  dx  x y 5   ,

                        1         dv      5 dy
                ekuk     5  =  v                 , −
                        y         dx      y 6  dx
                                1 dy     1 dy
                ;k                    , −
                                y 6  dx  5 dx
          lehdj.k (1) esa j[kus ij
                           1 dv   1           dv  1
                          −     +   v  , x 2      −  v =  −  5x 2
                           5 dx   x           dx  5
          ;g ,d js[kh; lehdj.k gS ftlesa " ,d vkfJr pyjkf'k gSA
          ;gk¡   , 2 'C  rFkk   , 2 '

                     ∫  Pdx =     ∫  −  5   dx  , −  5 log x =  log x =  5  log    1 
          vr%                  x                              x   5 


                ∴               e ∫  P dx  , e log (1/5)  =  x 1 5


                               "    *  ,  ∫ Q  (I.F.) dx +  c


                                                             −
                ;k             "  C    ,  ∫ −  5x 2  (1/ x 5 ) dx +  c  ,  5 x dx +  ∫  − 3  c
                             1     1   5   1 
                             5     5    , −    2   +  c                  [ v = 1/ y 5 ]
                             y     x   2 x  

                          1    5 1  
                ;k        5  5  +    2   +  c
                         xy    2 x  

          ;gh vodyu lehdj.k dk gy gSA
   288   289   290   291   292   293   294   295   296   297   298