Page 188 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 188

vFkZ'kkL=k esa lkaf[;dh; fof/;k¡




                    uksV          mnkgj.k (Illustration) 7: fuEu lwpdkadksa ls laxkeh fopyu xq.kkad dh x.kuk dhft,μ
                                  o"kZ %  1     2      3      4       5      6      7      8      9       10
                                  ekax %  100   115    116    108     108    122    122    124    112     112
                                  iw£r %  106   102    102    104     98     96     97     97     95      90
                                  gy (Solution):
                                                            laxkeh fopyu&xq.kkad dh x.kuk


                                        o"kZ      ek¡x (x)     fpÉ        iw£r (y)   fpÉ       fpÉksa dk xq.kuiQy
                                         1         100                     106
                                         2         115          +          102        –               –
                                         3         116          +          102        =               –
                                         4         108          –          104        +               –
                                         5         108          =           98        –               –
                                         6         122          +           96        –               –
                                         7         122          =           97        +               –
                                         8         124          +           97        =               –
                                         9         112          –           95        –               +
                                        10         112          =           90        –               –
                                                                                                     c = 1

                                                            N = n – 1 = 10 – 1 = 9
                                                                  +    − (2c  n )
                                                            r  =  +
                                                            c         n
                                                                                      7
                                                                   +   × (21 −  ) 9  − F I    7
                                                                                 +
                                                                                   H K
                                                              =  +             =  G J  =  −
                                                                        n            9        9
                                                            r  = – .88
                                                            c
                                  11-4 fu'p;u xq.kkad (Coefficient of Determination)

                                  vkfJr pj&ewY; vFkkZr~ Y-Js.kh esa gksus okys fopj.k dks ge nks Hkkxksa esa ck¡V ldrs gSaμ
                                    (i)  ,sls ifjorZu tks X-Js.kh esa gksus okys ifjorZuksa osQ iQyLo:i gksrs gSaA bUgsa Li"VhÑr ;k O;k[;s; izlj.k
                                        dgrs gSaA
                                   (ii)  ,sls fopj.k tks X Js.kh osQ ifjorZu osQ dkj.k ugha gksrs oju~ vU; dkj.kksa ls gksrs gSa] budks vLi"VhÑr

                                        ;k vO;k[;s; izlj.k dgrs gSaμ
                                        oqQy izlj.k = Li"VhÑr izlj.k + vLi"VhÑr izlj.k
                                  Li"VhÑr izlj.k dk vadkRed eki fu'p;u xq.kkad ;k fu/kZj.k xq.kkad }kjk fd;k tkrk gSA ;g okLro esa
                                  lg&lEcU/ xq.kkad dk oxZ gksrk gS] ftls bl lw=k osQ }kjk ifjdfyr fd;k tkrk gSμ
                                                      sy 2      Unexplained Variance    Σ(y −  ) y  2
                                                2
                                         c of D = r  = 1 –   2   or 1 –               =
                                                      oy           Total Variance       Σ(y +  ) y  2
                                  fu'p;u xq.kkad ls gesa ml izfr'kr dk irk pyrk gS ftl izfr'kr ls Y-Js.kh osQ ifjorZu X-Js.kh osQ ifjorZuksa
                                  osQ dkj.k gksrs gSaA mnkgj.kkFkZ] ;fn eqnzk dh ek=kk (X) vkSj ewY;&Lrj Y esa 8 dk lg&lEcU/ xq.kkad r gS rks



        182                               LOVELY PROFESSIONAL UNIVERSITY
   183   184   185   186   187   188   189   190   191   192   193