Page 250 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 250

VED1
          E\L-LOVELY-H\math14-1 IInd 6-8-11 IIIrd  24-1-12 IVth 21-4-12 VIth 10-9-12



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV
                                                   1         A     B     C
                                eku yks                    -   +      +
                                             x (1 −  x )(1 +  ) x  x  1 −  x  1 +  x
                                ∴                          - A  (1 −  x 2 ) +  Bx  (1 +  ) x +  Cx (2 −  ) x

                                lehdj.k (1) esa Øe'k%   - 3.   vkSj 2  j[kus ij
                                                                  1       1
                                                           - 1,B =  , C =  −
                                                                  2       2
                                                      dx
                                ∴                  ∫ x −  x 3   - ∫        1  +  2(1 −  1  ) x  −  2(1 +  1  ) x        dx
                                                                x

                                                                     1            1
                                                                                              +
                                                           - log||x −  log|1 −  x | −  log|1 +  x | c .     mÙkj
                                                                     2            2
                                mnkgj.k 7-  ∫  dx   dk eku Kkr dhft,A
                                           4  − x 2

                                                   ∫  dx  	
  ∫  dx
                                gy %                4 −  x 2  (2) −  x 2
                                                                 2

                                                              1     2 +  x            dx     1      a +  x  
                                                           -    log       +  , c       ∫   =    log      +  c 
                                                             2.2    2 −  x            a −  x 2  2a  a −  x     
                                                                                      2
                                                             1     2 +  x
                                                           -   log      +  . c                              mÙkj
                                                             4     2 −  x

                                mnkgj.k 8- eku Kkr dhft,%  ∫    1        dx
                                                          ( +  x  )(x 2  + b  a 2 )

                                gy % lekdY; dks vkaf'kd fHkUu esa tksM+us ij
                                                  1            A  +  Bx + C
                                                                     2
                                            (x +  bx +  )(  2  a 2 )  	
  x + b  x +  a 2
                                                 1             1      1          b −  x    
                                gy djus ij         2   2   -   2  2     +   2   2   2   2   
                                          (x +  bx +  ) (  a  )  a +  b    x +  b  (a +  b  ) (x +  a  ) 

                                ∴                - - ∫      1  2  2  dx
                                                      (x +  b ) (x +  a  )
                                                       1      dx       1     b −  x
                                                  -       2 ∫     +      2 ∫       dx
                                                     a +  2  b  x + a  a +  2  b  x +  2  a 2
                                                       1                  b      dx         1        2x
                                                  -         log|x +  b |+    2 ∫      −        2 ∫        dx
                                                     a +  2  b 2       a +  2  b  x +  2  a 2  2(a +  2  b  )  x +  2  a 2
                                                       1               b     1 x  1           2 
                                                  -       2   log|x +  b |+  tan −  −  log|x +  2  a  | +    c
                                                     a +  b            a      a   2            
                                                      2
                                                                                   
                                                       1          x + b    b     1 x
                                                  -           log       +   tan −    +  . c               mÙkj
                                                     a + b   2   x +  b 2  a     a
                                                      2
                                                                   2
                                                                                   
   245   246   247   248   249   250   251   252   253   254   255