Page 255 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 255
VED1
E\L-LOVELY-H\math14-1 IInd 21-10-11 IIIrd 24-1-12 IVth 21-4-12 VIth 10-9-12
bdkbZ ;ksx (tksM+) osQ :i esa lekdyu
∫ x tan − 1 xdx dk eku Kkr dhft,A 1 (x + 2 1) tan − 1 x − x + c ) uksV
3- (mÙkj% 2 2
4- ∫ 2x + 2 dx x − 1 dk eku crk,¡A (mÙkj% 1 log 2x − 1 1 + c )
x +
3
dx
5- ∫ x − x 3 dk eku fudkysaA (mÙkj% log| |− x 1 log|1 − x |− 1 log|1 + x | c+ )
2
2
mÙkj % Lo&ewY;kadu
lekdy [kaM'k% ! izekf.kr $ cjkcj
' f}?kkr * & 7 ' 8 %
14-7 lanHkZ iqLrosaQ $ " %
iqLrdsa 1- ,lsfU'k;y eSFksesfVDl iQkWj bdksukWfeDl µ uWV lsMsLVj] ihVj gkeUM] izSfUVl gkWy ifCy-
2- eSFksesfVDl iQkWj bdksukWfeLV µ ;kekus µ izSfUVl gkWy bfUM;kA
3- eSFksesfVDl iQkWj bdksukWfeDl µ ekydkWe] fudksyl] ;w-lh- yUnuA
4- eSFksesfVDl iQkWj bdksukWfeLV µ esgrk vkSj enukuh µ lqYrku pUn ,.M lUlA
5- xf.krh; vFkZ'kkL=k µ ekbdy gSjhlu] iSfVªd okYMjuA
6- eSFksesfVDl iQkWj bdksukWfeLV µ fleksu vkSj Cywe µ ohok ifCyosQ'kuA
7- eSFksesfVDl iQkWj bdksukWfeDl µ dkyZ ih- fleksu] ykWjsUl CyweA
8- eSFksesfVDl iQkWj bdksukWfeDl ,.M iQkbukUl µ ekfVZu ukeZuA
9- eSFksesfVDl iQkWj bdksukWfeDl µ dkmQfUly iQkWj bdksukWfed ,tqosQ'kuA