Page 255 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 255

VED1
          E\L-LOVELY-H\math14-1 IInd 21-10-11  IIIrd 24-1-12 IVth 21-4-12 VIth 10-9-12


                                                                            bdkbZ     ;ksx (tksM+) osQ :i esa lekdyu





                ∫ x  tan − 1  xdx  dk eku Kkr dhft,A             1  (x +  2  1) tan − 1  x −  x  +  c )  uksV
            3-                                             (mÙkj%   2              2


            4- ∫  2x +  2  dx x −  1   dk eku crk,¡A               (mÙkj%  1  log  2x − 1 1  +  c  )
                                                                               x +
                                                                         3

                   dx
            5- ∫  x −  x 3  dk eku fudkysaA   (mÙkj%  log| |−  x  1  log|1 −  x |−  1  log|1 +  x | c+  )
                                                                          2
                                                             2

          mÙkj % Lo&ewY;kadu

                lekdy                  [kaM'k%       !  izekf.kr      $  cjkcj

             '  f}?kkr              *   &            7   '            8   %

          14-7 lanHkZ iqLrosaQ      $   "     %





             iqLrdsa     1- ,lsfU'k;y eSFksesfVDl iQkWj bdksukWfeDl µ uWV lsMsLVj] ihVj gkeUM] izSfUVl gkWy ifCy-

                         2- eSFksesfVDl iQkWj bdksukWfeLV µ ;kekus µ izSfUVl gkWy bfUM;kA
                         3- eSFksesfVDl iQkWj bdksukWfeDl µ ekydkWe] fudksyl] ;w-lh- yUnuA

                        4- eSFksesfVDl iQkWj bdksukWfeLV µ esgrk vkSj enukuh µ lqYrku pUn ,.M lUlA
                         5- xf.krh; vFkZ'kkL=k µ ekbdy gSjhlu] iSfVªd okYMjuA

                         6- eSFksesfVDl iQkWj bdksukWfeLV µ fleksu vkSj Cywe µ ohok ifCyosQ'kuA
                         7- eSFksesfVDl iQkWj bdksukWfeDl µ dkyZ ih- fleksu] ykWjsUl CyweA

                         8- eSFksesfVDl iQkWj bdksukWfeDl ,.M iQkbukUl µ ekfVZu ukeZuA
                        9- eSFksesfVDl iQkWj bdksukWfeDl µ dkmQfUly iQkWj bdksukWfed ,tqosQ'kuA
   250   251   252   253   254   255   256   257   258   259   260