Page 260 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 260
VED1
E\L-LOVELY-H\math15-1 IInd 6-8-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
vFkZ'kkfL=k;ksa dk xf.kr
uksV 2
mnkgj.k 10- ∫ x log x dk eku Kkr dhft,A
1
gy % [k.M'k% lekdyu }kjk
∫ 1 2 x log x ! - x 2 2 log x 2 1 2 ∫ 1 2 1 x 2 2 !
.
x
x 2 2 1 2
- log x 2 ∫ x dx
2 1 2 1
x 2 2 1 x 2 2
- log x 2
2 1 2 2 1
1 2
- @ , 2 x 2
4 1
1
- @ , 2 0$ 2 1
4
3
- @ , 2 mÙkj
4
∫ π /4
mnkgj.k 11- 0 tan x dk eku Kkr dhft,A
∫ π/4 tan x ! - [ π / 4
gy % 0 ]log sec x 0
π
- @ ,
@ ,
3
4
- @ , 2 2 @ , . 0 @ , - 31
- @ , 2 mÙkj
mnkgj.k 12- ∫ 0 π/6 1- sin 2x dk eku Kkr dhft,A
gy % ∫ π /6 1 − sin 2x ! - ∫ π /6 cos x + 2 sin x − 2 2 sin x cos x !
0 0
2
- ∫ π /6 (cos x − sin ) !
x
0
- ∫ π /6 (cos x − sin )xdx - [ cos x ]sin x + π / 6
0 0
π π
- sin 6 + cos 6 2 0
3 /
31
1 3 1 3
- + 2 3 / - + 2
2 2 2 2
1 + 3 − 2 3 − 1
- - mÙkj
2 2