Page 264 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 264
VED1
E\L-LOVELY-H\math15-1 IInd 6-8-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
vFkZ'kkfL=k;ksa dk xf.kr
uksV − 2
∫
- 2 @ , / x !
log x 1 log x + 1
-2 e − - 2 e
x x x
e
∴ ∫ 1 2 log x ! - 2 log x + e x 1 1 2
2
x
log 2 + 1 log 1 1 +
-2 e − e
2 1
1 1
-2 log 2 + e − 1 0 @ , - 31
2 2
1 1 1
-2 log 2 − e = 0 2 @ , 1 mÙkj
2 2 2
∫ π/2 cos x
mnkgj.k 7- 0 (1 + sin ) (2 + sin ) x dk eku Kkr dhft,A
x
gy %
- # j[kdj vkaf'kd fHkUu }kjk gy djus ij
cos xdx
π
/2
∫ 0 (1 + sin ) (2 + sin ) x
log 1 + sin x sin x π 0 / 2
x
2 +
1
1 + sin π 1 + sin 0
- @ , 2 − log
2 + sin 1 π 2 + sin 0
2
2
2
1
3 4
- @ , − log = log = log mÙkj
3
2
1 3
2
∫ π/2 x
mnkgj.k 8- 0 sin x dk eku Kkr dhft,A
∫ π /2 x sin x ! - x (cos ) − x π /2 − ∫ π /2 1.( cos ) !
x
−
gy % 0 0 0
- − x cos x π 0 / 2 + sin x π 0 / 2
π / 2 π / 2
-2 x cos x 0 + sin x 0
π π π
-2 2 cos 2 − 0 + sin 2 − sin 0
- 2 3 /
- mÙkj