Page 259 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 259
VED1
E\L-LOVELY-H\math15-1 IInd 21-10-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
bdkbZ fuf'pr lekdyu
x 3 a a 3 2 uksV
- ax − 2 = a − 3 − 0 = & mÙkj
3 0 3 3
∫ a dx
mnkgj.k 7- 0 dk eku Kkr dhft,A
a 2 − x 2
a
1 x
∫ a dx
sin −
gy % 0 a − x 2 0
a
2
0
a
-
2
a
a
π π
-
2
3 - 2 3 - mÙkj
2 2
mnkgj.k 8- ∫ 0 π/2 x cos x dk eku Kkr dhft,A
gy % [k.M'k% lekdyu }kjk
∫ 0 π /2 x cos x ! - [ x ] sin x π 0 /2 − ∫ 0 π /2 sin x dx
π π π / 2
- sin − 0 2 [ − ] cos x
2 2 0
π π π π
- + cos − cos 0 - + 0 − 1 = 2 mÙkj
2 2 2 2
mnkgj.k 9- ∫ π/4 1 − sin2x dk eku Kkr dhft,A
0
gy % ∫ π /4 1 − sin 2x ! - ∫ π /4 cos x + 2 sin x − 2 2 sin x cos x !
0 0
2
- ∫ π /4 (cosx − sin ) !
x
0
- ∫ π /4 (cosx − sin ) !
x
0
- [ cosx ]sin x + π 0 / 4
π π
- sin + cos 2
3P 2
3P
4 4
1 1
- + 2 3 2
2 2
2
- / - (2 + 1) mÙkj
2