Page 259 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 259

VED1
          E\L-LOVELY-H\math15-1 IInd 21-10-11  IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12


                                                                                        bdkbZ     fuf'pr lekdyu




                                             x   3  a  a 3     2                                 uksV
                                      -   ax −  2  =  a −   3  −  0 =   &           mÙkj

                                              3    0   3     3

                          ∫  a  dx
                mnkgj.k 7-   0         dk eku Kkr dhft,A
                              a 2  − x 2

                                                  a
                                            1 x 
                                        
                          ∫  a  dx   	
   sin − 
                gy %       0  a − x 2           0
                                               a
                                              
                               2
                                                         0
                                              a
                                                      

                                      - 
 
        2 
 
   
                                                         a
                                              a
                                                      
                                                            π       π
                                      - 
 
      2 
 
   3  -    2 3 -                mÙkj


                                                            2       2
                mnkgj.k 8-  ∫  0 π/2 x  cos x 	   dk eku Kkr dhft,A
                gy % [k.M'k% lekdyu }kjk
                        ∫ 0 π /2 x  cos x  !  - [  x  ] sin x  π 0 /2  − ∫ 0 π /2 sin x dx
                                          π  π              π / 2
                                      -    sin  − 0  2 [    −  ] cos x
                                          2  2              0
                                        π      π          π         π
                                      -   +    cos  −  cos 0  -   +  0 −  1 =   2     mÙkj
                                                        
                                        2      2          2         2
                mnkgj.k 9-  ∫  π/4  1  − sin2x 	   dk eku Kkr dhft,A
                           0

                gy %	 ∫  π  /4  1 −  sin 2x  !  -  ∫  π /4  cos x +  2  sin x −  2  2 sin x  cos x  !
                      0                        0

                                                         2
                                      - ∫  π /4  (cosx −  sin )  !
                                                       x
                                         0
                                      - ∫  π /4 (cosx −  sin )  !
                                                      x
                                         0
                                      - [      cosx ]sin x +  π 0  / 4

                                            π     π  
                                      - sin   +  cos     2  
 
 3P 2   
 3P
                                        
                                           4      4 
                                          1   1 
                                      -    +       2  3 2
                                          2   2 
                                         2
                                      -     /   -  (2 + 1)                            mÙkj
                                         2
   254   255   256   257   258   259   260   261   262   263   264