Page 258 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 258
VED1
E\L-LOVELY-H\math15-1 IInd 6-8-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
vFkZ'kkfL=k;ksa dk xf.kr
uksV 1 2 2
b
a
- [(log ) − (log ) ]
2
1
- 0@ , ' / @ , &1 0@ , ' 2 @ , &1
2
1 b
- @ , &' ? @ , mÙkj
2 a
mnkgj.k 2- ∫ π/4 tan x sec x dk eku Kkr dhft,A
0
gy % ∫ π /4 tan x sec x ! - [ ]sec x π /4 = sec π − sec 0
0 0 4
- 2 2 mÙkj
3 dx
mnkgj.k 3- ∫ dk eku Kkr dhft,A
1 x
3 dx
∫ - [ 3
gy % 1 x ]log x - @ , ! 2 @ , - @ , ! mÙkj
1
∫ π/2 2
mnkgj.k 4- 0 cos x dk eku Kkr dhft,A
2
∫ π /2 cos x ! - ∫ π /2 1 + cos 2x !
gy % 0 0 2
π / 2
1 sin 2x
- x +
2 2 0
sin 2 . π
1π 2 sin 2 0 × 1 π π
- + − 0 − = × = mÙkj
22 2 2 2 2 4
∫ π/4 tan x dx dk eku Kkr dhft,A
2
mnkgj.k 5- 0
∫ π /4 tan x dx - ∫ π /4 (sec x − 1) !
2
2
gy % 0 0
π
- [ x ]tan x − π 0 /4 = tan π 4 − 4 − (tan 0 − 0)
π
- 2 mÙkj
4
mnkgj.k 6- ∫ a y dk eku Kkr dhft,] tgk¡
2
0
gy % / - & ∴ - & 2
2
2
∴ ∫ 0 a y ! - ∫ 0 a (a − x 2 ) !