Page 107 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_ENGLISH
P. 107

Unit 7: Mean Deviation and Standard Deviation


                   where         d = (X – A).                                                        Notes
                Steps : (i)  Take the deviations of the items from an assumed mean and denote these
                           deviations by d.
                       (ii)  Multiply the deviations by the respective frequencies and obtain the total,  ∑ fd .
                                                                     2
                       (iii) Obtain the squares of the deviations, i.e., calculate  d .
                       (iv) Multiply the squared deviations by respective frequencies and obtain the total,
                               2
                            ∑ fd .
                       Substitute the values in the above formula.
            Example 8:  Calculate the standard deviation from the data given below:
                Size of item         Frequency          Size of item        Frequency

                    3.5                  3                  7.5                85
                    4.5                  7                  8.5                32
                    5.5                 22                  9.5                 8
                    6.5                 60
            Solution:
                               CALCULATION OF STANDARD DEVIATION
                   X            f           (X–6.5)d          fd                fd 2
               Size of item

                   3.5          3              – 3            – 9               27
                   4.5          7              – 2           – 14               28
                   5.5         22              – 1           – 22               22
                   6.5         60               0              0                 0
                   7.5         85             + 1            + 85               85
                   8.5         32             + 2            + 64              128
                   9.5          8             + 3            + 24               72

                                                                                2
                              N = 217                      ∑ fd  = 128       ∑ fd  = 362
                                                   ∑  2  ⎛  ∑ fd  fd  ⎞  2
                                             σ =       − ⎜   ⎟
                                                         ⎝ N  ⎠ N
                                              2
                                          ∑ fd = 362,  ∑ fd  = 128, N = 217


                                                       ⎛ 362  ⎞ 128  2
                                             σ =      − ⎜  ⎟   =  1.67  ( −  ).59  2
                                                       ⎝ 217  ⎠ 217
                                                      −
                                               =  1.67 0.35  = 1.149.
            3.  Step Deviation Method: When this method is used we take a common factor from the given
                data. The formula for computing standard deviation is:

                                                   ∑  fd 2  ⎛  ∑  fd ⎞  2
                                             σ =       −  ⎜  ⎟   i ×
                                                    N    ⎝  N ⎠



                                             LOVELY PROFESSIONAL UNIVERSITY                                      101
   102   103   104   105   106   107   108   109   110   111   112